If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+18x+12=0
a = 5; b = 18; c = +12;
Δ = b2-4ac
Δ = 182-4·5·12
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{21}}{2*5}=\frac{-18-2\sqrt{21}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{21}}{2*5}=\frac{-18+2\sqrt{21}}{10} $
| 9-(2/10)x=-19 | | 6(1x-6)=-66 | | -4=5r=r | | 4n-15=77 | | 16=9x-x | | 4x+-7(x+3)=-36 | | 12y=5×+16 | | 18=-5k+3 | | 100x-99x=-1 | | x+2/4=-4 | | 5(x–3)–2(2x+4)=-2(x–2) | | 4x+21=5(2x+1)+1 | | h-(3)=15 | | -12-2x=10* | | (q+12)÷4=9 | | -5+2=y-19 | | 15-(2x-4)=25 | | -6=13x-3x | | 3^(x=20 | | 2x+12+126=180 | | 1x/3–1/5=0,8 | | 5=-1+k | | 2=5+-6x | | 5x/8-3=7 | | -70=2-4x | | 6x^2+3x-84=0 | | -3(-r+9)=-47 | | 82=6x+2(1-8x) | | 48+x=126 | | -k+10=-25 | | 2.5x-13=15 | | 3.3+10m=7.46 |